

COURSE OUTLINE

Course Title:	*	ING III		,
Code No.:	ARC 205		*	
Program:	ARCHITECTURAL TECHNICI	AN (DRAFTING	G)	
Semester:	IV			
Date:	OCTOBER, 1986			
Author:	G. FRECH			
		New:	Revision:	Х
APPROVED:	Chairperson	Date		

CALENDAR DESCRIPTION

ARCHITECTURAL ENGINEERING III	ARC 205
Course Name	Course Number

PHILOSOPHY/GOALS:

The student will have a basic knowledge in the design of light framing and the use of structural tables. He/she will be able to design simple structures in skeleton frame using steel and wood.

METHOD OF ASSESSMENT (GRADING METHOD):

A - 86 - 100% B - 70 - 85%

C - 55 - 69%

R - Repeat

X - Work to be upgraded or new work assigned

- Marks will be accumulated and averaged using tests and assignments
- Final testing will be given students not achieving 75% average with no failures or 80% average with one failure 50-54% average.
- Neatness, attendance, lateness and attitude will be considered in assessment.

TEXTBOOK(S):

CISC DRAFTING FUNDAMENTALS

Applied Strength of Materials

REFERENCE:

C.I.S.C. Steel Handbook

ARCHITECTURAL ENGINEERING III

ARC 205

TOPI	C NO. P	ERIOD	TOPIC DESCRIPTION	REFERENCE
		12	Beam Design - Steel/Wood	
			- Selection of Bean Size - Loading - Design loads - Wall plates - Crippling - Shear - Deflection	
	2.	10	Column Design	
			Axial loadingColumn design, steel/woodBase plates	
	3.	4	Connections	
			- Tables - Headers - Seats	
	4.	6	Drawings	
			- Grid system - Details - Notes - Schedules	
	5.	16	Trusses	
			- Stress diagrams - Bow's notation - Member design - Panel points - Splices - Smoleys tables	
	6.	14	Retaining Walls	
			- Types - Checks - Loading - Design	

SPECIFIC OBJECTIVES

ARC 205

Beam Design - Steel & Wood

- 1. Identify loading
- 2. Calculate design loading
- 3. Flexure formula calculation of and tables
- 4. Beam design steel
- 5. Beam design wood
- 6. Design wall plates
- 7. Design for crippling and know crippling formula
- 8. Design for shear
- Design for deflection and know deflection formula for simple span with total volume, point load at center and combinations

Column Design

- Identify columns under axial load
- 2. Identify K factor
- Calculate least radius of gyration
- 4. Identify short, medium and long columns
- 5. Know rules for column design and apply
- 6. Design simple steel column base plates
- 7. Identify columns in wood for 1/d range

Connections

- 1. Standard types
- 2. Special types
- 3. Tables

Drawings

- 1. Identify grid systems and their purpose
- 2. Identify and read column schedules
- 3. Identify and draw special details
- 4. Apply the information to student drawing projects

Trusses

- 1.Use Bow's notation
- 2.Draw and scale truss stress diagrams
- 3. Determine members in tension or compression
- 4. Calculate stresses in panel points mathematically
- 5.Use Smoley's tables
- 6.Calculate shop clearances
- 7. Calculate connector requirements
- 8. Panel point design and detail.

Retaining Walls

- 1. Identify types
- 2.Be able to do all checks
- 3. Design walls of the main types with different profile shapes
- 4.Draw graphically all types of different profiles, with and without surchar
- 5. Measure all dimensions and loads accurately to do all checks